

The Use of Inhaled Prostaglandins in Patients With ARDS

A Systematic Review and Meta-analysis

Brian M. Fuller, MD, MSCI; Nicholas M. Mohr, MD; Lee Skrupky, PharmD, BCPS; Susan Fowler, MLIS; Marin H. Kollef, MD, FCCP; and Christopher R. Carpenter, MD

CHEST 2015; 147(6):1510-1522

The use of inhaled prostaglandins in patients with acute respiratory distress syndrome: a systematic review and meta-analysis e-Appendix 1. PRISMA Checklist

Section/topic	#	Checklist item	Reported on page #	
TITLE				
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1	
ABSTRACT				
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility riteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and applications of key findings; systematic review registration number.		
INTRODUCTION				
Rationale	3	Describe the rationale for the review in the context of what is already known.	2	
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	2	
METHODS				
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	3, e- Appendix 3	
Eligibility criteria	6	specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, anguage, publication status) used as criteria for eligibility, giving rationale.		
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.		
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	3-4, e- Appendix 3	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	4	
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	4	
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	4-5, e- Appendix 3	
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	4-5	
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	5	
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., l^2) for each meta-analysis.	5-6	

Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	5 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	5-6
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	6, Figure 1
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	6-7, Table 1
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	7
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	7-8, Figure 2, Table 2
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	7-8, Figure 2, Table 2
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	7-8, e-Figure 1
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	8-9, Table 2, e- Figure 2, e-Table 2, e-Table 3
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	10-11
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	12
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	12
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	Title, Page, Acknowledgements

Page numbers provided consider the Abstract as Page 1.

e-Appendix 2. MOOSE Checklist

	Reported on page	Comments
Reporting of background should include		
Problem definition	2	
Hypothesis statement	2-3	
Description of study outcomes	2	
Type of exposure or intervention used	2	
Type of study designs used	2-3, e-Appendix 3	
Study population	4, e-Appendix 3	
Reporting of search strategy should include		
Qualifications of searchers (eg librarians and investigators)	3, 4, e-Appendix 3	
Search strategy, including time period used in the synthesis and key words	3, 4, e-Appendix 3	
Effort to include all available studies, including contact with authors	3, 4, e-Appendix 3	
Databases and registries searched	3	
Search software used, name and version, including special features used (eg explosion)	e-Appendix 3	
Use of hand searching (eg reference lists of obtained articles)	3, 4, e-Appendix 3	
List of citations located and those excluded, including justification	e-Appendix 3, Figure 1	
Method of addressing articles published in languages other than English	e-Appendix 3	
Method of handling abstracts and unpublished studies	3, 4	
Description of any contact with authors	3	
Reporting of methods should include		<u></u>
Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested	4	
Rationale for the selection and coding of data	4	

(eg sound clinical principles or convenience)	
Documentation of how data were classified and coded (eg multiple raters, blinding and interrater reliability)	4
Assessment of confounding (eg comparability of cases and controls in studies where appropriate)	4, 5
Assessment of study quality, including blinding of quality assessors, stratification or regression on possible predictors of study results	4, 5
Assessment of heterogeneity	5
Description of statistical methods (eg complete description of fixed or random effects models, justification of whether the chosen models account for predictors of study results, doseresponse models, or cumulative meta-analysis) in sufficient detail to be replicated	5, 6
Provision of appropriate tables and graphics	Tables and Figures and eTables
Reporting of results should include	
Graphic summarizing individual study estimates and overall estimate	Figure 2
,	Figure 2 Table 1, e-Table 1
estimates and overall estimate Table giving descriptive information for each	
estimates and overall estimate Table giving descriptive information for each study included Results of sensitivity testing (eg subgroup	Table 1, e-Table 1
estimates and overall estimate Table giving descriptive information for each study included Results of sensitivity testing (eg subgroup analysis)	Table 1, e-Table 1 Table 2
estimates and overall estimate Table giving descriptive information for each study included Results of sensitivity testing (eg subgroup analysis) Indication of statistical uncertainty of findings	Table 1, e-Table 1 Table 2
estimates and overall estimate Table giving descriptive information for each study included Results of sensitivity testing (eg subgroup analysis) Indication of statistical uncertainty of findings Reporting of discussion should include Quantitative assessment of bias (eg publication	Table 1, e-Table 1 Table 2 7, 8
estimates and overall estimate Table giving descriptive information for each study included Results of sensitivity testing (eg subgroup analysis) Indication of statistical uncertainty of findings Reporting of discussion should include Quantitative assessment of bias (eg publication bias) Justification for exclusion (eg exclusion of non-	Table 1, e-Table 1 Table 2 7, 8 10, Table 1
estimates and overall estimate Table giving descriptive information for each study included Results of sensitivity testing (eg subgroup analysis) Indication of statistical uncertainty of findings Reporting of discussion should include Quantitative assessment of bias (eg publication bias) Justification for exclusion (eg exclusion of non-English language citations)	Table 1, e-Table 1 Table 2 7, 8 10, Table 1 11, 12

observed results		
Generalization of the conclusions (eg appropriate for the data presented and within the domain of the literature review)	11, 12	
Guidelines for future research	13	
Disclosure of funding source	Title Page,Acknowledgements	

Page numbers provided consider the Abstract as Page 1.

e-Appendix 3

PROTOCOL: Search and identification of studies

The use of inhaled prostaglandins in patients with acute respiratory distress syndrome: a systematic review and meta-analysis

Patient/Problem: Mechanically ventilated patients with acute respiratory distress syndrome (ARDS) or acute lung injury (ALI)

Intervention: Inhaled epoprostenol or inhaled alprostadil Comparison: Placebo or no intervention/usual care

Inhaled nitric oxide (iNO)

Outcome:

Main outcome measures of interest: oxygenation, pulmonary artery pressures, mortality, adverse effects (report qualitatively and combine *post hoc* if possible)

Clinical question: In mechanically ventilated patients with ARDS/ALI, does inhaled epoprostenol or inhaled alprostadil improve oxygenation or clinical outcome?

Is there any consistency in the data with respect to dosing, weaning, or evidence of rebound?

Inclusion Criteria	Exclusion Criteria
Any language or publication type, including case series/studies providing necessary data Children and adults Invasive positive pressure ventilation during study period Outcomes of interest reported Crossover trials (e.g. with iNO) must report physiological effects and outcome data of prostaglandins transparently Must explicitly state the patient population is ALI or ARDS	Neonatal Non-human studies Paper = review, correspondence, or editorial Intravenous use of pulmonary vasodilators Epoprostenol or alprostadil for shock, RV failure, or reperfusion injury Pre- and post- intervention data not reported

Step 1 (Relevance Screen):

Search PubMed, EMBASE, CINAHL, and the Cochrane Library using the search strategy below. BMF and NMM: Screen title and abstract of manuscripts resulting from electronic search.

Step 2:

Identify unpublished data

BMF: Manually screen reference lists of all review articles from relevance screen BMF and SF: Search online for details of clinical trials registration (ClinicalTrials.gov)

BMF: Hand search abstracts from: SCCM, ESICM, ATS, CHEST, International Symposium on Intensive Care and Emergency Medicine, and Pharmacotherapy from 1999 to 2014

BMF and NMM: Manually screen reference lists of all articles to be potentially included from electronic and manual review of review articles

BMF: If unpublished data is found and clarification is needed, contact PI of that study

Step 3:

BMF, NMM, LS: Full review of the remaining manuscripts for agreement and final inclusion.

Step 4:

BMF, NMM, LS: Fill out data abstraction form for final studies included

Step 5: Transfer data from Data Abstraction Form to Tables

Step 6: Assess Table for potential for meta-analysis of the data

Rationale for inclusion of non-randomized studies:

- 1. There is a high likelihood that the existing body of literature does not contain a sufficient number of randomized trials to investigate the question of interest
- 2. Inclusion of non-randomized studies will allow an explicit evaluation of the strengths and weaknesses of the current literature
- 3. Non-randomized studies will allow some assessment of beneficial and harmful effects of inhaled prostaglandins
 - a. Prospective interventional studies will allow an assessment of the influence of prostaglandins on physiology
 - b. Inclusion of cohort studies will allow a better assessment of sustained physiologic benefit, as well as side effects and harm, as reported during using clinical dosing
- 4. To provide evidence for the undertaking of randomized trials

SEARCH STRATEGY:

24255157[uid]

Mechanically Ventilated
Acute lung Injury OR Acute Respiratory Distress Syndrome
PubMed
5/8/2014, 108 Results

("Respiratory Distress Syndrome, Adult" [Mesh] OR "Acute Lung Injury" [Mesh] OR "Ventilator-Induced Lung Injury" [Mesh] OR "Shock Lung" OR "respiratory distress syndrome" [tiab] OR "adult respiratory distress" OR ARDS [tiab] OR "pulmonary distress syndrome" [tiab] OR "DS [tiab] OR "Acute Lung Injury" [tiab] OR "Pain Induced Lung Injur* [tiab] OR VILI [tiab]) AND ("Epoprostenol" [Mesh] OR epoprostenol OR flolan OR pgi2 OR pgx OR prostacyclin OR "prostaglandin i 2" OR "prostaglandin I2" OR "prostaglandin x" OR "u 53217" OR epoprostanol [tiab]) AND ("Outcome Assessment Health Care "[Mesh] OR "Mortality" [Mesh] OR "mortality" [Subheading] OR "Survival" [Mesh] OR "Survival Analysis" [Mesh] OR "Quality of Life" [Mesh] OR "Pain Measurement" [Mesh] OR "Pain" [Mesh] OR "Health Status Indicators" [Mesh] OR "Health Status" [Mesh] OR outcome* OR respond* OR response* OR failure* OR mortality OR fatal* OR death OR dead OR deaths OR "passed away" OR demise* OR Recurren* OR progression OR progressed OR relaps* OR growth OR grew OR growing OR regress* OR surviv* OR nonsurviv* OR cure OR cures OR "quality of life" OR qol [tiab] OR HRQL [tiab] OR "life quality" [tiab] OR morbidit* OR adverse OR side effect* OR "side effects" OR event OR events OR nausea OR nauseous OR vomit* OR emesis OR comfort* OR pain OR painful OR painfree OR stress OR analges*) NOT (("Animals" [Mesh]) NOT ("Animals" [Mesh] AND "Humans" [Mesh]))

CINAHL

5/8/2014, 31 Results

(MH "Respiratory Distress Syndrome" OR MH "Respiratory Distress Syndrome, Acute" OR MH "Acute Lung Injury+" OR MH "Ventilator-Induced Lung Injury+" OR "Respiratory Distress Syndrome" OR "Acute Lung Injury" OR "Ventilator-Induced Lung Injury" OR "Shock Lung" OR "adult respiratory distress" OR "ARDS" OR "pulmonary distress syndrome" OR "RDS" OR "Acute Lung Injuries" OR "Ventilator Induced Lung Injury" OR "Ventilator Induced Lung Injuries" OR "VILI") AND (MH "Epoprostenol" OR epoprostenol OR flolan OR pgi2 OR pgx OR prostacyclin OR "prostaglandin i 2" OR "prostaglandin x" OR "u 53217" OR epoprostanol) AND (MH "Outcomes (Health Care)+" OR MH "Outcome Assessment" OR MH "Mortality+" OR MH "Survival" OR MH "Survival Analysis+" OR MH "Quality of Life+" OR MH "Pain+" OR MH "Pain Measurement" OR MH "Health+" OR MH "Health Status+" OR MH "Health Status Indicators" OR "Health Status" OR outcome* OR respond* OR response* OR failure* OR mortality OR fatal* OR death OR dead OR deaths OR "passed away" OR demise* OR Recurren* OR progression OR progressed OR relaps* OR growth OR grew OR growing OR regress* OR surviv* OR nonsurviv* OR cure OR cures OR "quality of life" OR qol OR HRQL OR "life quality" OR morbidit* OR adverse OR side effect* OR "side effects" OR event OR events OR nausea OR nauseous OR vomit* OR emesis OR comfort* OR pain OR painful OR painfree OR stress OR analges*)

Embase

5/8/2014, 269 Results

'respiratory distress syndrome'/de OR 'adult respiratory distress syndrome'/exp OR 'ventilator induced lung injury'/exp OR 'respiratory distress syndrome' OR 'ARDS' OR 'Shock Lung' OR 'ventilation induced lung injury' OR 'ventilator induced lung injury' OR 'ventilator induced lung injuries' OR 'ventilator induced lung injuries' OR VILI AND ('prostacyclin'/exp OR cycloprostin OR epoprostenol OR epoprostanol OR flolan OR pgi2 OR pgx OR 'prostacyclin' OR 'prostaglandin i 2' OR 'prostaglandin I2' OR 'prostaglandin x' OR 'u 53217' OR 'u 53217a' OR 'u53217' OR u53217a) AND ('outcome assessment'/exp OR 'mortality'/exp OR 'survival'/exp OR 'quality of life'/exp OR 'pain'/exp OR 'pain assessment'/exp OR 'health status'/exp OR 'health status indicator'/exp OR outcome* OR respond* OR response* OR failure* OR mortality OR fatal* OR death OR dead OR deaths OR 'passed away' OR demise* OR Recurren* OR progression OR progressed OR relaps* OR growth OR grew OR growing OR regress* OR surviv* OR nonsurviv* OR cure OR cures OR 'quality of life' OR qol OR HRQL OR 'life quality' OR morbidit* OR adverse OR side

effect* OR 'side effects' OR event OR events OR nausea OR nauseous OR vomit* OR emesis OR comfort* OR pain* OR stress OR analges*) NOT ([animals]/lim NOT [humans]/lim)

Scopus

5/8/2014, 51 Results

("Respiratory Distress Syndrome" OR "Acute Lung Injury" OR "Ventilator-Induced Lung Injury" OR "Shock Lung" OR "adult respiratory distress" OR ARDS OR "pulmonary distress syndrome" OR RDS OR "Acute Lung Injuries" OR Ventilator Induced Lung Injur* OR VILI) AND (epoprostenol OR flolan OR pgi2 OR pgx OR prostacyclin OR "prostaglandin i 2" OR "prostaglandin I2" OR "prostaglandin x" OR "u 53217" OR epoprostanol) AND ("Health Status" OR outcome* OR respond* OR response* OR failure* OR mortality OR fatal* OR death OR dead OR deaths OR "passed away" OR demise* OR Recurren* OR progression OR progressed OR relaps* OR growth OR grew OR growing OR regress* OR surviv* OR nonsurviv* OR cure OR cures OR "quality of life" OR qol OR HRQL OR "life quality" OR morbidit* OR adverse OR side effect* OR "side effects" OR event OR events OR nausea OR nauseous OR vomit* OR emesis OR comfort* OR pain OR painful OR painfree OR stress OR analges*)

The Cochrane Library

Cochrane Central Register of Controlled Trials: 5/8/2014, 9 Results Cochrane Database of Systematic Reviews: 5/8/2014, 15 Results

#1 MeSH descriptor: [Respiratory Distress Syndrome, Adult] explode all trees 592

#2 MeSH descriptor: [Acute Lung Injury] explode all trees 112

#3 MeSH descriptor: [Ventilator-Induced Lung Injury] explode all trees 520

#4 #1 or #2 or #3 or "Respiratory Distress Syndrome" or "Acute Lung Injury" or "Ventilator-Induced Lung Injury" or "Shock Lung" or "adult respiratory distress" or ARDS or "pulmonary distress syndrome" or RDS or "Acute Lung Injuries"

or Ventilator Induced Lung Injur* or VILI 3772

#5 MeSH descriptor: [Epoprostenol] explode all trees 472

#6 #5 or epoprostenol or flolan or pgi2 or pgx or prostacyclin or "prostaglandin i 2" or "prostaglandin I2" or

"prostaglandin x" or "u 53217" or epoprostanol 1172

#7 MeSH descriptor: [Outcome Assessment (Health Care)] explode all trees 98934

#8 MeSH descriptor: [Mortality] explode all trees 10968

#9 MeSH descriptor: [Survival] explode all trees 130

#10 MeSH descriptor: [Survival Analysis] explode all trees 15518

#11 MeSH descriptor: [Quality of Life] explode all trees 14757

#12 MeSH descriptor: [Pain Measurement] explode all trees 14960

#13 MeSH descriptor: [Pain] explode all trees 32936

#14 MeSH descriptor: [Health] explode all trees 5818

#15 MeSH descriptor: [Health Status] explode all trees 5336

#16 MeSH descriptor: [Health Status Indicators] explode all trees 16074

#17 #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or #16 or "Health Status" or outcome* or respond* or response* or failure* or mortality or fatal* or death or dead or deaths or "passed away" or demise* or Recurren* or progression or progressed or relaps* or growth or grew or growing or regress* or surviv* or nonsurviv* or cure or cures or "quality of life" or qol or HRQL or "life quality" or morbidit* or adverse or side effect* or "side effects" or event or events or nausea or nauseous or vomit* or emesis or comfort* or pain or painful or painfree or stress or analges* 502647

#18 #4 and #6 and #17 24

ClinicalTrials.Gov 5/8/2014, 2 Results

Advanced Search...

Conditions: Respiratory Distress Syndrome OR Acute Lung Injury

Interventions: epoprostenol OR flolan OR prostacyclin

e-Table 1 Study Results

ontrolled	Trials					
Pre-interv	ention value	Post-inter	rvention value	р	Dosing	Comments
		OI P _a O ₂ :F _i O ₂	7.4 (6.5-9.7) Not reported	0.001	Dose response protocol	Significant improvement in OI at 30ng/kg/min
					Range 10- 50ng/kg/min	
$P_aO_2:F_iO_2$	148.4 (60.1)	P _a O ₂ :F _i O ₂	161.5 (77.5)	0.21	20ug nebulized over 30 minutes	
onrandor	nized interv	entiona	l studies			
				р	Dosing	
P _a O ₂ :F _i O ₂ P _a O ₂ mPAP PVR	114 (11.9) 72.5 (3.2) 35.0 (2.2) 228 (27.5)	P _a O ₂ :F _i O ₂ P _a O ₂ mPAP PVR	135 (12.0) 88.0 (4.7) 31.9 (1.7) 182 (17.0)	<0.001 <0.001 <0.05 <0.05	Titrated to maximal effect on oxygenation Mean 7.5 (2.5)	No difference in outcomes between PGI ₂ and iNO
					ng/kg/min Range 1.5 to 34 ng/kg/min	
P _a O ₂ mPAP	80.0 (14.3) Not reported	P _a O ₂ mPAP	122.3 (11.8) Reduced in all	0.06 NS	50 ng/kg/min	
P _a O ₂ mPAP PVR	105 (10) 35.1 (2.0) 225 (30.0)	P _a O ₂ mPAP PVR	130 (12) 28.0 (1.5) 190 (25.0)	<0.05 <0.05 <0.05	1, 10, then 25 ng/kg/min (each for 15 minutes)	No significant increase in P _a O₂ at 1 ng/kg/min
P _a O ₂ mPAP PVR	77 (3) 40.0 (2.0) 156 (15.0)	P _a O ₂ mPAP PVR	95 (4) 32.0 (2) 100 (12.0)	<0.05 <0.05 <0.05	Titrated by 1ng/kg/min for maximal effect on P _a O ₂ Mean 10(1) ng/kg/min	
					Range 6-15 ng/kg/min	
mPAP	187.2 (10) 29 (1)	P _a O ₂ :F _i O ₂ mPAP	28 (1)	0.38	Titrated by 10ng/kg/min	No difference between doses of 10 and 50
P _a O ₂ :F _i O ₂ P _a O ₂ mPAP PVR	155 (15) 81 (3) 32 (1) 177 (18)	P _a O ₂ :F _i O ₂ P _a O ₂ mPAP PVR	157 (15) 82 (3) 29 (1) 153 (18)	NS NS <0.05 <0.05	Titrated for optimal P _a O ₂ Mean 34(9) ng/kg/min	Responders 8/15 0/6 patients with pulmonary ARDS responded
	Pre-interviol OI PaO2:FiO2 PaO2:FiO2 PaO2 mPAP PVR PaO2:FiO2 mPAP PVR PaO2:FiO2 mPAP PVR PaO2:FiO2 mPAP PVR PaO2:FiO2 mPAP PVR PaO2 mPAP PVR PAP PVR	Pre-intervention value	Pre-intervention value	Pre-intervention value Post-intervention value OI 10.0 (7.8-14.5) OI 7.4 (6.5-9.7) PaO2:FiO2 194 (120-219) PaO2:FiO2 Not reported Pre-intervention with page 1 148.4 (60.1) PaO2:FiO2 161.5 (77.5) Onrandomized interventional studies Pre-intervention value Post-intervention value PaO2:FiO2 114 (11.9) PaO2:FiO2 135 (12.0) PaO2 72.5 (3.2) PaO2 88.0 (4.7) mPAP 35.0 (2.2) mPAP 31.9 (1.7) PVR 228 (27.5) PVR 182 (17.0) PaO2 105 (10) PaO2 130 (12) mPAP 35.1 (2.0) PVR 190 (25.0) PVR 225 (30.0) PVR 190 (25.0) PaO2 77 (3) PaO2 95 (4) mPAP 40.0 (2.0) PVR 100 (12.0) PVR 156 (15.0) PVR 100 (12.0) PaO2:FiO2 187,02 82 (1) PaO2:FiO2 82 (3)	Ontrolled Trials Pre-intervention value Post-intervention value p OI 10.0 (7.8-14.5) OI 7.4 (6.5-9.7) 0.001 P _a O ₂ :F _i O ₂ 194 (120-219) P _a O ₂ :F _i O ₂ Not reported 0.001 P _a O ₂ :F _i O ₂ 148.4 (60.1) P _a O ₂ :F _i O ₂ 161.5 (77.5) 0.21 Onrandomized interventional studies Pre-intervention value p p P _a O ₂ :F _i O ₂ 114 (11.9) P _a O ₂ :F _i O ₂ 135 (12.0) <0.001	Ontrolled Trials Pre-intervention value Post-intervention value p Dosing OI 10.0 (7.8-14.5) OI 7.4 (6.5-9.7) 0.001 Dose response protocol P ₈ O ₂ :F ₁ O ₂ 194 (120-219) P ₉ O ₂ :F ₁ O ₂ Not reported Range 10-50ng/kg/min P ₉ O ₂ :F ₁ O ₂ 148.4 (60.1) P ₉ O ₂ :F ₁ O ₂ 161.5 (77.5) 0.21 20ug nebulized over 30 minutes Onrandomized interventional studies Pre-intervention value Post-intervention value Posting P ₈ O ₂ :F ₁ O ₂ 114 (11.9) P ₉ O ₂ :F ₁ O ₂ 135 (12.0) <0.001

CHEST Online Supplement

						Range 2-40 ng/kg/min	oxygenation in pulmonary ARDS
Observationa	al cohort stu	udies					
Author, Year	Pre-interve	ntion value	Post-inter	vention value	р	Dosing	Comments
Meyer, 1998	P_aO_2 P_aO_2 : F_iO_2 $mPAP$	60 (5) 100 (5) 38 (4)	P_aO_2 P_aO_2 : F_iO_2 mPAP	90 (10) 240 (30) 32 (2)	<0.05 <0.05 <0.1	Mean 41 (2) ug/h Range 20-80 ug/h	Weaning at intensivist discretion
Siobal, 2003	P _a O ₂ :F _i O ₂ S _p O ₂	60 (11) 85.7 (7.7)	P _a O ₂ :F _i O ₂ S _p O ₂	80 (17) 93.6 (3.3)	0.002 0.001	Mean 28(17) ng/kg/min Range 10- 50ng/kg/min	Measurements taken within 2 hours of PGI ₂ initiation
Rovira, 2004	P _a O ₂ :F _i O ₂	152 (30)	$P_aO_2:F_iO_2$	203 (40)	<0.05	Not reported	
Camamo, 2005	PGI ₂ P _a O ₂ :F _i O ₂ P _a O ₂	66.7 (23) 62.9 (15.9)	PGI ₂ P _a O ₂ :F _i O ₂ P _a O ₂ 53.7 PGE ₁	58.2 (22.4) (17.4)	0.17 0.08	Start 17.4 (12.5) ng/kg/min Max 34.3 (13.2) ng/kg/min	No difference between the two drugs on MV duration, HLOS, ICU LOS
	P _a O ₂ :F _i O ₂ P _a O ₂	106.1 (53.4) 88.9 (38.7)	P _a O ₂ :F _i O ₂ P _a O ₂	123.5 (77.6) 78.1 (22.9)	0.21 0.34	Start 15.8(7) ng/kg/min Max 28.3(14.2) ng/kg/min	
Raheem, 2009	P _a O ₂ :F _i O ₂	57.7 (11.8)	P _a O ₂ :F _i O ₂	105.7 (33.3)	Not reported	Not reported	No difference in oxygenation between doses ≤12.5 or ≥ 25
Ross, 2012	P _a O ₂ :F _i O ₂ P _a O ₂ S _p O ₂	62.5 (24.4) 59.1 (6.9) 83.3 (8.9)	P _a O ₂ :F _i O ₂ P _a O ₂ S _p O ₂	130.9 (38.6) 117.9 (32.8) 95.6 (4.1)	Not reported	Start 23.3 (18.3) ng/kg/min Max 39.9 (11.9) ng/kg/min	Dosed based on IBW
Dunkley, 2013	P _a O ₂ :F _i O ₂	104.9 (48.5)	P _a O ₂ :F _i O ₂	155.6 (94.6)	Not reported	Start 30 (10) ng/kg/min Max 50 ng/kg/min	10/16 patients with no titration
Pacheo, 2013	Survivors PaO2:FiO2 Nonsurvivor PaO2:FiO2	94.1 (34.5) S 81.7 (32.7)	Nonsurvivo	254.3 (123.0) ors 142.7 (102.2)	<0.05 <0.05	1st 24 hours Survivors 26.5 (10.3) ng/kg/min Nonsurvivors 34.9 (12.4) ng/kg/min	No weaning occurred in nonsurvivors
						End of therapy Survivors 13.3 (10.9) Nonsurvivors 32.6	

						(14.7)	
Torbic, 2013	P _a O ₂ :F _i O ₂	110 (20)#	P _a O ₂ :F _i O ₂	143.0 (36.2)	Not reported	Protocol: start at .05 ug/kg/min and decrease by .01 ug/kg/min every 1-2 hours as tolerated until off	
Singh, 2014	P _a O ₂ :F _i O ₂	78.9 (30.2)	$P_aO_2:F_iO_2$	121.8 (71)	<0.0001	20ng/kg/min	Nonresponders 25.5%
Case studies a	ind case s	eries					
Author, Year	Pre-interve	ntion value	Post-interv	ention value	р	Dosing	Comments
Walmrath, 1993	P _a O ₂ :F _i O ₂ mPAP	119.5 (19.3) 40.3 (13.5)	P _a O ₂ :F _i O ₂ mPAP	173.0 (17.7) 32.0 (3.8)	Not reported	17-50ng/kg/min	
Bein, 1994	P _a O ₂ mPAP	79.4 49.0	P _a O ₂ mPAP	150.5 38.0	Not reported	5 ng/kg/min	
Pappert, 1995	$P_aO_2:F_iO_2$	76.3 (2.5)	$P_aO_2:F_iO_2$	91.3 (17.6)	Not reported	2-20 ng/kg/min	
van Heerden, 1996	P _a O ₂ :F _i O ₂	76.0	P _a O ₂ :F _i O ₂	270.0	Not reported	20-50 ng/kg/min	Only reported oxygenation on 1 patient
van Heerden, 1997	P_aO_2	84.0	P _a O ₂	110.0	Not reported	10-50 ng/kg/min	
Allan, 2010	P_aO_2 : F_iO_2 P_aO_2	57.0 57.0	$P_aO_2:F_iO_2$ P_aO_2	200.0 147.0	Not reported	13 ng/kg/min	
McMillen, 2011	$P_aO_2:F_iO_2$	66.3 (8.5)	P _a O ₂ :F _i O ₂	92.5 (45)	Not reported	20-40 ng/kg/min	

Ol: oxygenation index; P_aO_2 : partial pressure of arterial oxygen; F_iO_2 : fraction of inspired oxygen; mPAP: mean pulmonary artery pressure; PVR: pulmonary vascular resistance; NS: not significant; PGI_2 : epoprostenol; iNO: inhaled nitric oxide; ARDS: acute respiratory distress syndrome; PGE_1 : alprostadil; S_pO_2 : peripheral oxygen saturation; NS: non-significant; MV: mechanical ventilation; HLOS: hospital length of stay; ICU LOS: intensive care unit length of stay; IBW: ideal body weight # Estimated from figures

e-Table 2. Adverse effects of inhaled prostaglandins

Author, Year	Adverse effects mentioned?	Details of reported side effects
Dahlem, 2004	Yes	No side effects reported No effect on systemic hemodynamics No bleeding complications
Siddiqui, 2013	Yes	None reported
Walmrath, 1996	Yes	No effect on systemic hemodynamics
Van Heerden, 1996	Yes	No effect on systemic hemodynamics
Zwissler, 1996	Yes	Hypotension, n= 1 (12.5%)
Putensen, 1998	Yes	No effect on systemic hemodynamics
van Heerden, 2000	Yes	No effect on systemic hemodynamics No effect on platelet aggregation (but wide variation) Dose response of 6-keto PGF1 _a
Domenighetti, 2001	Yes	No effect on systemic hemodynamics
Meyer, 1998	Yes	No effect on systemic hemodynamics
Siobal, 2003	Yes	Decrease in P _a O ₂ , n= 1 (9.1%)
Rovira, 2004	Yes	No "significant hemodynamic changes observed"
Camamo, 2005	No	
Raheem, 2009	No	
Ross, 2012	No (Obtained from author contact)	AKI, n=1 (8.3%) Bleeding, n=1 (8.3%) Hypotension, n=2 (16.7%) Thrombocytopenia, n=4 (33.3%)
Dunkley, 2013	Yes	Medication error, n= (25%)
		Hypotension, n= 3 (18.8%); tachycardia, n= 2 (12.5%); Hyperkalemia, n= 2 (12.5%); Hypokalemia, n= 1 (6.3%); thrombocytopenia, n= 2 (12.5%); anemia, n= 2 (12.5%); Increased LFTs, n= 2 (12.5%), AKI, n= 1 (6.3%)
Pacheo, 2013	No	
Torbic, 2013	Yes	PRBC transfusion and platelet transfusion in 25/52 and 10/52 respectively
Singh, 2014	Yes	Hypotension, n= 21 (21.4%) Tachycardia, n=11 (11.2%)
Walmrath, 1993	Yes	Hypotension, n= 1 (33.3%)
Bein, 1994	Yes	No effect on arterial pressure
Pappert, 1995	Yes	No effect on arterial pressure or cardiac output Decrease in P_aO_2 , $n=1$ (33.3%)
van Heerden, 1996	Yes	No evidence of systemic hypotension
van Heerden, 1997	Yes	Reduction in platelet aggregation Dose response of 6-keto PGF1 _a
Allan, 2010	No	
McMillen, 2011	Yes	Decrease in P _a O ₂ , n= 3 (75.0%)

e-Table 3 Reported mortality in ARDS patients receiving inhaled prostaglandins

Outcome	Author, Year	N	Mortality, n (%)
Mortality*	Pappert, 1995	3	1 (33.3)
	Walmrath, 1996	16	7 (43.8)
	Zwissler, 1996	8	2 (25)
	van Heerden, 1997	1	1 (100)
	Meyer, 1998	15	6 (40)
	Putensen, 1998	10	3 (30)
	Domenighetti, 2001	15	7 (46.7)
	Siobal, 2011	11	7 (63.6)
	Dahlem, 2004	14	3 (21.4)
	Camamo, 2005	27	18 (66.7)
	Raheem, 2009	15	5 (33.3)
	Allan, 2010	1	0 (0%)
	McMillen, 2011	4	3 (75)
	Dunkley, 2013	16	9 (56.3)
	Pacheo, 2013	216	136 (63.0) hospital
	T 1: 0040	50 (00 :II ADDO)	148 (68.5) at 90
	Torbic, 2013	52 (32 with ARDS)	26 (50.0)
	Singh, 2014	98	49 (50.0)
Total	17 studies	522	295 (56.5%)